Assignment-4

1. Find the singular points and classify them for the equation $x^{3}(x-2) y^{\prime \prime}+x^{3} y^{\prime}+6 y=0$.
2. Find the power series solution for the equation $y^{\prime \prime}+x y^{\prime}+\left(1+x^{2}\right) y=0$.
3. Solve the initial value problem $\left(x^{2}-1\right) y^{\prime \prime}+3 x y^{\prime}+x y=0, y(0)=4, y^{\prime}(0)=6$.
4. Find the power series solution around the point $x_{0}=1$ for the equation $x^{2} y^{\prime \prime}+x y^{\prime}+$ $y=0$.
5. Find a polynomial approximation of fourth degree to the solution of the equation $(1+$ $2 x) y^{\prime \prime}-y^{\prime}+y=0, y(0)=0, y^{\prime}(0)=1$.
6. Find a polynomial approximation of fourth degree to the solution of the equation $y^{\prime \prime}+$ $x y^{\prime}+(1+x) y=0, y(0)=-1, y^{\prime}(0)=0$.
7. Express the polynomials x^{3} and $x^{3}+2 x^{2}-3 x+6$ in terms of Legendre polynomials.
8. Use first recurrence relation for Legendre polynomials to show that the value of $\frac{P_{500}(L)}{P_{502}(L)}$ is negative when $P_{501}(L)=0$.
9. Use first recurrence relation for Legendre polynomials to show that $\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}$.
10. Use first recurrence relation for Legendre polynomials to find the value of $\int_{-1}^{1} x^{2} P_{n}^{2}(x) d x$.
