

ED-612

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Paper - I

Integration Theory and Functional Analysis

Time : Three Hours][Maximum Marks : 80[Minimum Pass Marks : 16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Let E be a measurable set such that $0 < vE < \infty$. Then there is a positive set A contained in E with vA > 0.
 - (b) State and prove Radon-Nikodym theorem.
 - (c) State and prove Riesz Representation theorem.

DRG_16_(3)

(Turn Over)

(2)

Unit-II

- 2. (a) State and prove Fubini theorem.
 - (b) If f is absolutely continuous on [a, b] and f'(x) = 0 a.e. then f is constant.
 - (c) Let E be a measurable subset of $X \times Y$ such that $\mu \times \nu(E)$ is finite. Then for almost all x the set E_x is a measurable subset of Y. The function g defined by $g(x) = \nu(E_x)$ is a measurable function defined for almost all x and

$$\int g d\,\mu = \mu \times \nu(E)$$

Unit-III

3. (a) Let K be a compact set, O an open set with $K \subset O$. Then

 $K \subset U \subset H \subset O$

where U is a r-compact open set and H is a compact G_{δ} .

- (b) Let μ be a Baire measure on a locally compact space X and E a r-bounded Baire set in X. Then for $\epsilon > 0$,
 - (*i*) There is a *r*-compact open set O with $E \subset O$ and $\mu (O \sim E) < \epsilon$.
 - (*i*) $\mu E = \sup \{\mu k : K \subset E, K \text{ a compact } G_{\delta}\}.$
- (c) State and prove Riesz-Markov theorem.

 $DRG_16_(3)$

(Continued)

(3)

Unit-IV

4. (*a*) Let *M* be a closed linear subspace of a normed linear space *X*. Then the quotient space *X*/*M* with the norm

 $||x + M|| = \inf \{||x + M|| : m \in M\}$

is a Banach space if X is a Banach space.

- (b) Let X be a finite dimensional normed linear space. Then any two norms defined on X are equivalent.
- (c) Show that a bounded linear transformation T from a normed linear space X into Y is continuous.

Unit-V

- (a) Define weak convergence. Let {x_n} be a weakly convergent sequence in a normed space X. Then
 - (i) The weak limit of $\{x_n\}$ is unique,
 - (i) The sequence $\{||x_n||\}$ is bounded.
 - (b) The dual of l_1 is isometrically isomorphic to l_{∞} .
 - (c) If X is a finite dimensional normed linear space, then weakly convergent sequence on it is strong convergent.

 $DRG_{16}(3)$

580