
1. (a) Let Ai  F (x) for all i I, where I is an
index set. Then prove that
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(b) State and prove second decomposition
theorem.
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(c) Prove that the standard Fuzzy intersection
is the only idempotent t-norm.

2. (a) Prove that a t-norm i and an involute
fuzzy complement C, the binary operation
u on [0, 1] defined by u (a, b) = c (i (a),
c (b)) for all a,b [0, 1] is a t-conorm
such that <i, u, c> is a dual triple.

(b) Let A and B are Fuzzy numbers with
triangular shape in a Fuzzy equation as
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Find the solution of equation A  X = B.

(c) Prove that that < i, u, c > be a dual triple.
Then prove that the Fuzzy operations
i, u, c satisfy the law of excluded middle
and the law of contradiction.

3. (a) Prove that for Fuzzy sets

MIN [A, MAX (A B)] = A.
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(b) Let R be a reflexible Fuzzy relation on
X 2, where | X | = n  2. Then prove that
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(c) Solve the following Fuzzy relation
equation using max-min composition
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4. (a) If R symmetric, then prove that each
power of R is symmetric.

(b) Explain Fuzzy compatibility relations.

(c) Explain Fuzzy graphs.

5. (a) Prove that every possibility measure ‘Pos’
on a finite power set P (x) is uniquely
determined by a possibility distributive
function r : X  [0, 1] via the formula.
pos (A) = max r (x) for each A P (X).

(b) Explain the Evidence theory.

(c) Let a given finite body of evidence (. m)
be nested, then prove that for all
A, B  P (X), we have

(i)      bel min bel ,belA B A B    

(ii)      max ,Pl A B Pl A Pl B    
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