

M.A./M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - I

Advanced Abstract Algebra - I

Time : Three Hours] [Maximum Marks : 80

- **Note** : Answer any **two** parts from each question. All questions carry equal marks.
- 1. (a) Prove that any two composition series of a finite group are equivalent.
 - (b) Prove that every subgroup of a solvable group is solvable.
 - (c) If G be a nilpotent group, then prove that every subgroup of G and every homomorphic image of G are nilpotent.

DRG_19_(3)

- (2)
- 2. (a) Let $F \le E \le K$ be fields. If K is a finite extension of E and E is a finite extension of F, then prove that K is a finite extension of F and

[K:F] = [K:E] [E:F].

- (b) Prove that, a polynomial of degree *n* over a field can have at the most *n* roots in any extension field.
- (c) Prove that, let F be a field. Then there exists an algebraically closed field K containing F as a subfield.
- 3. (a) Find the degree of splitting field $x^5 3x^3 + x^2 3$ over Q.
 - (b) Prove that, the prime field of a field F is either isomorphic to Q or to $\frac{z}{p}$, p is prime.
 - (c) If α , β be the algebric elements over a field *F* of characteristic zero, then prove that *F*(α , β) is a simple extension of *F*.
- **4.** (*a*) Prove that, the set Aut (*K*) of all automorphisms of a field *K* form a group under composition of mappings.
 - (b) State and prove fundamental theorem of Galois theory.
 - (c) Find the Galois group of $x^3 2 \in Q[x]$.

DRG_19_(3)

- 5. (a) Prove that, any quartic over F is solvable by radicals.
 - (b) Show that the polynomial $2x^5 5x^4 + 5$ is not solvable by radicals.
 - (c) Let *E* be the splitting field of $x^n a \in F(x)$. Then prove that G(E/F) is a solvable group.

DRG_19_(3)

M.A./M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - II

Real Analysis - I

Time	:	Three	Hours]	[Maximum		Marks	:	80
				[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- **1.** (*a*) State and prove Cauchy's general principle of uniform convergences.
 - (b) Let α be monotonically increasing on [a, b]. Suppose $f_n \in R(\alpha)$ on [a, b] for n = 1, 2, 3, ... and suppose $f_n \rightarrow f$ uniformly on [a, b]. Then prove that $f \in R(\alpha)$ on [a, b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$.

DRG_67(4)

(c) Show that the series $\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots$ converges uniformly in $0 < a \le x \le b < 2\pi$.

Unit-II

- 2. (a) If $\sum a_n$ is a series of conplex number which converges absolutely, then prove that every rearrangement of $\sum a_n$ converges and they all converges to the same sum.
 - (b) State and prove the converse of Abel's theorem.
 - (c) Find the radius of convergence of the following series :

(*i*)
$$1 + x + \frac{x^2}{\underline{|2|}} + \frac{x^3}{\underline{|3|}} + \frac{x^4}{\underline{|4|}} + \dots$$

(*ii*) $1 + 2x + 3x^2 + 4x^3 + \dots$

Unit-III

- 3. (a) Let Ω be the set of all invertible linear operators on \mathbb{R}^n .
 - (*i*) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$ and ||B-A|| $||A^{-1}|| < 1$, then prove that $B \in \Omega$.
 - (*ii*) Ω is open subset. Is $L(\mathbb{R}^n)$ and mapping $f: \Omega \to \Omega$ defined by $f(A) = A^{-1}$ for all $A \in \Omega$ is continuous?

DRG_67(4)

- (b) State and prove the Taylor's theorem.
- (c) State and prove the chain rule.

Unit-IV

4. (a) Determine the maximum and minimum values of the function

$$f(x, y) = x^{2} + y^{2} + \frac{3\sqrt{3}}{2}xy$$

subject to the constraint $4x^2 + y^2 = 1$.

(b) Prove that of all rectangular parallelopipeds of the same volume the cube has the least surface.

(c) If
$$u = \frac{x+y}{z}, v = \frac{y+z}{x}, w = \frac{y(x+y+z)}{xz}$$

show that u, v, w are not independent and find the relations among them.

Unit-V

- 5. (a) Write the definition of the following :
 - (i) The integral of 1-form
 - (ii) The integral of 2-form
 - (iii) The Triple integral

DRG_67_(4)

(4)

(b) State and prove the partitions of unity.

(c) Write a short note on differential form.

DRG_67(4)

M.A/M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - III

Topology-I

Time : Three Hours]

[Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove Schroeder-Bernstein theorem.
 - (b) Give an example of a topological space different from the discrete and indiscrete spaces in which open sets are exactly the same as closed sets.
 - (c) Let X be a topological space, and let $A \subset X$. Then prove that A is closed iff $D(A) \subset A$.

DRG_122_(3)

Unit-II

- 2. (a) Let X be any set and let \wp be the Kuratowski closure operator on X. Then prove that there exists a unique topology τ on X such that for each $A \subset X$, $\wp(A)$ coincides with τ -closure of A.
 - (b) Prove that homeomorphism is an equivalence relation in the collection of all topological spaces.
 - (c) Prove that the property of being a Lindelöf space is a topological property.

Unit-III

- **3.** (*a*) Prove that every subspace of a Hausdorff space is Hausdorff.
 - (b) Prove that a topological space X is normal iff for any closed set F and open set G containing F, there exists an open set V such that

$$F \subset V \subset \overline{V} \subset G$$

(c) State and prove Tietze's extension theorem.

Unit-IV

4. (a) Prove that a subset A of R is compact iff A is closed and bounded.

DRG_122_(3)

- (3)
- (b) Prove that a topological space is countably compact iff every countable collection of closed subsets of X with FIP has non-empty intersection.
- (c) Let (X^*, τ^*) be a one point compactification of a non-compact topological space (X, τ) . Then prove that (X^*, τ^*) is Hausdorff iff (X, τ) is Hausdorff and locally compact.

Unit-V

- 5. (a) Let (X, d) be a metric space. Then prove that the following statements are equivalent :
 - (i) X is compact
 - (ii) X is countably compact
 - (iii) X has BWP
 - (iv) X is sequentially compact
 - (b) Prove that a topological space X is disconnected iff there exists a non-empty proper subset of X which is both open and closed in X.
 - (c) Prove that every component of a locally connected space is an open set.

DRG_122_(3)

M.A./M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - IV

Advanced Complex Analysis-I

Time	:	Three	Hours]	[Maximum		Marks	:	80
				[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each questions. All questions carry equal marks.

Unit-I

1.	<i>(a)</i>	State	and	prove	Cauchy's	Integral
formula.						

(b) Prove that the function $\sin\left[c\left(z+\frac{1}{z}\right)\right]$

can be expanded in a series of the types

$$\sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^{-n} \quad \text{in which the}$$

coefficients of both z^n and z^{-n} are :

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\left|\sin\left(2c\cos\theta\right)\cos n\theta\right|}{\sin\left(2c\cos\theta\right)\cos n\theta} \, d\theta$$

DRG_170_(3)

(c) Define Entire function. Find the singularity

of the function $\frac{e^{c/(z-a)}}{e^{z/a}-1}$, indicating the

characters of each singularity.

Unit-II

- 2. (a) Prove that all the roots of $x^7 5z^3 + 12 = 0$ between the circles |z| = 1 and |z| = 2.
 - (b) State and prove maximum modulus principle.
 - (c) State and prove Inverse function theorem.

Unit-III

3. (*a*) Apply the calculus of residue to prove that :

$$\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$$

(b) Show that :

$$\int_{0}^{\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^{2}} d\theta = \frac{\pi a^{2}}{1 - a^{2}} \left(a^{2} < 1\right)$$

(c) Prove by contour integration :

$$\int_0^\infty \frac{\log(1+x^2)}{1+x^2} dx = \pi \log 2$$

DRG_170_(3)

Unit-IV

- 4. (a) Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ onto the straight line 4u + 3 = 0 and explain why the curve obtained is not a circle.
 - (b) Let f(z) be analytic function of z in a region D of the z-plane and $f'(z) \neq 0$ inside D. Then prove that the mapping w = f(z) is conformal at the point of D.
 - (c) Discuss the transformation $w = \tan z$.

Unit-V

- 5. (a) Show that, A family F of holomorphic function defined in a domain D, that is $F \subset H(D)$ is normal iff F is locally bounded.
 - (b) Let $\{f_n\}$ be a sequence in H(G) and $f \in (G, C)$ such that $f_n \to f$. Then show that f is analytic and $f_n^{(k)} \to f^{(k)}$ for each integer $k \ge 1$.
 - (c) State and prove Riemann mapping theorem.

DRG_170_(3)

M.A./M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - V

Advanced Discrete Mathematics - I

Time	:	Three	Hours]	[Maximum		Marks	:	80
				[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Define Tautology. If $H_1, H_2, ..., H_m$ and P imply Q, then prove that $H_1, H_2, ..., H_m$ imply $P \rightarrow Q$.
 - (b) What are the quantifiers? Explain universal quantifiers and existential quantifiers.
 - (c) Show that :

$$\exists (P \land Q) \to (\exists P \lor (\exists P \lor Q)) \Leftrightarrow (\exists P \lor Q)$$

DRG_230_(4)

Unit-II

- **2.** (*a*) State and prove basic homomorphism theorem.
 - (b) Define submonoid and prove that for any commutative monoid (M, *) the set of idempotent elements of M forms a submonoid.
 - (c) Define direct product of semigroup. Show that the direct product of any two semigroups is a semigroup.

Unit-III

3. (a) Define Distributive lattice. Let $(L, *, \oplus)$ be a distributive lattice. For any $a, b, c \in L$, prove that

$$(a * b = a * c) \land (a \oplus b = a \oplus c) \Longrightarrow b = c$$

- (b) State and prove De Morgan's law.
- (c) Define the following
 - (i) Sublattice
 - (ii) Direct product
 - (iii) Boolean algebra
 - (iii) Lattice as partially order set

DRG_230_(4)

Unit-IV

4. (*a*) Use the Karnaugh map representation to find a minimal sum-of-product of the following function :

 $f(a, b, c, d) = \Sigma(10, 12, 13, 14, 15)$

- (b) Define the following:
 - (i) Join-irreducible
 - (ii) Atoms and Minterms
 - (iii) Gates
 - (iv) Canonical forms
- (c) Find the value of

 $x_1 * x_2 \left[(x_1 * x_4) \oplus x'_2 \oplus (x_3 * x'_1) \right]$

for $x_1 = a$, $x_2 = 1$, $x_3 = b$ and $x_4 = 1$, where $a, b, 1 \in B$ and the Boolean algebra $(B, *, \oplus, ', 0, 1)$ is shown in the following figure :

DRG_230_(4)

(Turn Over)

(4)

Unit-V

- 5. (a) Define Polish notation; prove that the rank of any well formed polish formula is 1 and the rank of any proper head of a polish is greater than or equal to 1.
 - (b) State and prove Pumping Lemma.
 - (c) Define grammar and let language

$$L(Gs) = \{a^n b^n c^n \mid n \ge 1\}$$
 is generated by

the following grammar

 $Gs = \left\langle \{S, B, C\}, \{a, b, c\} S, \phi \right\rangle$ where ϕ consists of the production $S \rightarrow aSBC$, $S \rightarrow aBC$, $CB \rightarrow BC$, $aB \rightarrow ab, \ bB \rightarrow bb \ bC \rightarrow bc, \ cC \rightarrow cc$ then find the derivation for the strings $abc, \ a^2b^2c^2$ and $a^3b^3c^3$.

DRG_230_(4)