

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - I

Integration Theory and Functional Analysis

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) If E is a measurable set of finite positive measure, i. e., $0 < v(E) < \infty$, then prove that E contains a positive set A with v(A) > 0.
 - (b) State and prove Lebesgue Decomposition theorem
 - (c) State and prove Caratheodory Extension theorem.

DRG_44_(3)

Unit-II

- 2. (a) If A is a μ -measurable subset of X and B is a ν -measurable subset of Y, then prove that $A \times B$ is a $\mu \times \nu$ -measurable subset of $X \times Y$.
 - (b) Let E be a set in $R_{\sigma\delta}$ with $(\mu \times \nu)(E) < \infty$. Then show that the function g defined by

$$g(x) = v(E_x)$$

is a measurable function of x and $\int g d\mu = (\mu \times \nu)(E).$

(c) Prove that every finite signed Borel measure μ on R^k that is absolutely continuous with respect to the Lebesgue measure λ , is differentiable almost everywhere.

Unit-III

- 3. (a) Prove that every compact Baire set is a G_{δ} .
 - (b) Let μ be a measure defined on a σ -algebra $\}\}$ containing the Baire sets. If μ is quasi regular, then prove that for each $E \in \}\}$ with $\mu(E) < \infty$ there is a Baire set B with

$$\mu (E \Delta B) = 0$$

(c) State and prove Riesz-Markoff theorem.

Unit-IV

- **4.** (a) Let X be a non-zero finite-dimensional linear space of dimension n. If X is complete, then show that it is isomorphic to C^n .
 - (b) Show that on a finite dimensional linear space all norms are equivalent.
 - (c) Show that a normed linear space X is complete if and only if every absolutely convergent series in X is convergent.

Unit-V

- 5. (a) Prove that in a normed linear space X, $x_n \xrightarrow{w} x$ if and only if:
 - (i) The sequence $\{||x_n||\}$ is bounded.
 - (ii) For every element f of a total subset $M \subset X^*$, $f(x_n) \to f(x)$.
 - (b) Let X and Y be normed linear spaces and T a linear transformation on X into Y. Then T is continuous either at every point of X or at no point of X. It is continuous on X if and only if there is a constant M such that $||Tx|| \le M \cdot ||x||$ for every x in X.
 - (c) Show that the dual space of c_0 is l_1 .

DRG_44_(3)

M.A/M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - II

Partial Differential Equations and Mechanics - I

Time: Three Hours [Maximum Marks: 80]

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Solve the partial differential equation p + r + s = 1
 - (b) If ϕ is harmonic function in R_1 and $\frac{\partial \phi}{\partial n} = 0 \quad \text{on } R_2, \text{ then } \phi \text{ is a constant in } \overline{R}.$

DRG_92_(4)

(c) Find the Green's function for the Dirichlet problem on the rectangle $R_1: 0 \le x \le a, \ 0 \le y \le b$, described by the PDE.

$$(\Delta^2 + \lambda)u = 0 \text{ in } R_1$$
 and the *BC*, $u = 0$ on R_2

Unit-II

- **2.** (a) State and prove Mean value theorem for Harmonic function.
 - (b) Derive the one dimensional wave equation.
 - (c) Obtain the solution of the heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.

Unit-III

- **3.** (a) State and prove Lagrange's equation of first kind.
 - (b) Derive the Hamilton canonical equations.
 - (c) Derive Ruth's equation.

Unit-IV

4. (a) Define Poisson bracket. If $[\phi, \psi]$ be the Poisson bracket of ϕ and ψ , then prove that :

$$(i) \quad \frac{\partial}{\partial t} \left[\phi, \psi \right] = \left[\frac{\partial \phi}{\partial t}, \psi \right] + \left[\phi, \frac{\partial \psi}{\partial t} \right]$$

(ii)
$$\frac{d}{dt}[\phi, \psi] = \left[\frac{d\phi}{dt}, \psi\right] + \left[\phi, \frac{d\psi}{dt}\right]$$

- (b) Find a curve joining two points along with a particle falling from rest under the influence of gravity travels from higher to the lower point in the minimum time.
- (c) Show that the transformation:

$$P = \frac{1}{2}(p^2 + q^2), \quad Q = \tan^{-1}(\frac{q}{p})$$

is canonical.

Unit-V

5. (a) Find the attraction of thin spherical shell of mean M and radius a.

(b) Show that the potential of a uniform spherical shell, of small thickness k, density ρ and radius a at an external point-distant c from the centre is

$$\frac{2\pi\gamma k\rho a}{(n+1)(n+3)c}\left[\left(c+a\right)^{n+2}-\left(c-a\right)^{n+3}\right]$$

(c) State and prove Gauss' theorem.

DRG_92_(4)

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional (C)

Paper - III

Fuzzy Sets and its Applications - I

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Define law of excluded middle and law of contradiction and discuss the distributive property of (i, u, c) which satisfies these two laws.
 - (b) State characterization theorem of t-conorms and find t-conorm for $g(a) = 1 (1 a)^p$.

DRG_139_(4)

(c) Define convexity for a set graphically and show that a Fuzzy set A on R is convex iff

$$A(\lambda x_1 + (1 - \lambda)x_2) \ge \min [A(x_1), A(x_2)].$$

- 2. (a) Explain extension principle, how it differs from crisp function. Show that $\alpha [f(A)] \ge f(\alpha_A)$. Give a supportive example.
 - (b) Solve Fuzzy equation A + X = B where

$$A = \frac{.3}{[0,1)} + \frac{.5}{[1,2)} + \frac{.8}{[2,3)} + \frac{.9}{[3,4)} + \frac{1}{4} + \frac{.6}{(4,5]} + \frac{.2}{(5,6]}$$

$$B = \frac{.2}{[0,1)} + \frac{.3}{[1,2)} + \frac{.6}{[2,3)} + \frac{.5}{[3,4)} + \frac{.8}{[4,5)} + \frac{1}{6}$$
$$+ \frac{.5}{[6,7]} + \frac{.4}{[7,8]} + \frac{.2}{[8,9]} + \frac{.1}{[9,10]}$$

(c) $A(x) = \begin{cases} 0 & \text{for } x < -2 \text{ and } x > 4 \\ \frac{x+2}{3} & \text{for } -2 \le x \le 1 \\ \frac{4-x}{3} & \text{for } 1 \le x \le 4 \end{cases}$

$$B(x) = \begin{cases} 0 & \text{for } x < 1 \text{ and } x > 3 \\ x - 1 & \text{for } 1 \le x \le 2 \\ 3 - x & \text{for } 2 \le x \le 3 \end{cases}$$

Find

MIN (A, B) (x) and MAX (A, B) (x).

- 3. (a) Define crisp and fuzzy relations. Let $X = \{1, 2,, 10\}$. The cartesian product $(x \times y)$ contains 100 members. Let $R(X, X) = \{(x, y) \mid x \text{ and } y \text{ have the same remainder when divided by 3}. Is <math>R$ an equivalence relation on X? Find equivalence classes.
 - (b) Write a short note on Fuzzy morphisms.
 - (c) Prove that
 - (i) $w_i(a, d) \ge b$ iff $i(a, b) \le d$
 - (ii) $w_i (\inf a_i, b) \ge \sup w_i (a_i, b)$
- **4.** (a) Let $X = \{1, 2, ..., 100\}, Y = \{50, 51, ..., 100\}$

$$R(X,Y) = \begin{cases} 1 - \frac{x}{y} & x \le y \\ 0 & \text{otherwise} \end{cases}$$

- (i) What is the domain of R?
- (ii) What is the range of R?
- (*iii*) Calculate R^{-1}

- (b) Prove that min join are associative operations on binary fuzzy relations.
- (c) Write a short note on fuzzy compatibility relations.
- **5.** (a) Define the following:
 - (i) Total ignorance
 - (ii) Fuzzy measure
 - (iii) Degree of belief
 - (iv) Necessity measure
 - (b) If $X = \{a, b, c, d\}$, $m_1(a, b) = \cdot 2$, $m_1(a, c) = \cdot 3$, $m_1(b, d) = \cdot 5$, $m_2(a, d) = \cdot 2$, $m_2(b, c) = \cdot 5$, $m_2(a, b, c) = \cdot 3$. Calculate the basic probability assignment.
 - (c) $F = \frac{.4}{1} + \frac{.7}{2} + \frac{1}{3} + \frac{.8}{4} + \frac{.5}{5}$ and A(x) = 0 for all $x \notin \{1, 2, 3, 4, 5\}$. Determine Nec (A) and Pos (A).

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional - A

Paper - IV

Operations Research - I

Time: Three Hours] [Maximum Marks: 80 [Minimum Pass Marks: 16]

THE TASS WATER TO

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Solve the following linear programming problem by simplex method:

Maximize
$$Z_1 = 3x_1 + 2x_2 + 5x_3$$

Subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

DRG_199_(7)

(b) Apply the principle of duality to solve the linear programming problem:

Maximize
$$Z_1 = 3x_1 - 2x_2$$

Subject to $x_1 + x_2 \le 5$
 $x_1 \le 4$
 $1 \le x_2 \le 6$ and $x_1, x_2 \ge 0$

(c) A Steel company manufactures three products P_1 , P_2 , P_3 . Each product has to pass through two machines M_1 and M_2 . Each unit of P_1 requires 3 hours of M_1 and 2 hours of M_2 , each unit of P_2 requires 2 hours of M_1 and 5 hours of M_2 ; and each unit of P_3 requires 2 hours of M_1 and 3 hours of M_2 . The machines M_1 and M_2 are available for 30 hours and 40 hours respectively. The profit on each unit of products P_1 , P_2 and P_3 is $\neq 4$, $\neq 2$ and $\neq 3$ respectively. If all the manufactured products are sold, formulate the problem as an LPP to maximize the profit.

Unit-II

2. (a) Use Dual Simplex method to solve the following:

Maximize
$$Z = -2x_1 - x_3$$

Subject to $x_1 + x_2 - x_3 \ge 5$
 $x_1 - 2x_2 + 4x_3 \ge 8$
and $x_1, x_2, x_3 \ge 0$

(b) Use Big-M method to solve the following:

Maximize
$$Z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$ and $x_1, x_2 \ge 0$

(c) Write the dual of the following L.P. problem:

$$\begin{array}{ll} \text{Minimize} & Z_1 = 3x_1 - 2x_2 + 4x_3 \\ \text{Subject to} & 3x_1 + 5x_2 + 4x_3 \geq 7 \\ & 6x_1 + x_2 + 3x_3 \geq 4 \\ & 7x_1 - 2x_2 - x_3 \leq 10 \\ & x_1 - 2x_2 + 5x_3 \geq 3 \\ & 4x_1 + 7x_2 - 2x_3 \geq 2 \\ \text{and} & x_1, \ x_2, \ x_3 \geq 0 \end{array}$$

Unit-III

3. (a) For the following L.P.P

Minimize
$$Z = \lambda x_1 - \lambda x_2 - x_3 + x_4$$

Subject to $3x_1 - 3x_2 - x_3 + x_4 \ge 5$
 $2x_1 - 2x_2 + x_3 - x_4 \le 3$
and $x_1, x_2, x_3, x_4 \ge 0$

find the range of λ over which the solution remain basic feasible and optimal.

- (b) An office equipment manufacturer procues two kinds of products, chairs and lamps. Production of either a chair or a lamp requires 1 hour of production capacity in the plant. The plant has a maximum capacity of 10 hours per week. The gross margin from the sale of a chair is ₹80 and ₹40 for that of a lamp. Formulate the problem as a goal programming problem if the goal of the firm is to earn a profit of ₹800 per week.
- (c) Explain the graphical solution to a general programming problem.

Unit-IV

4. (a) Solve the following transportation problem in which cell entries represent unit costs:

	To			Available	
	2	7	4	5	
	3	3	1	8	
From	5	4	7	7	
	1	6	2	14	
Required	7	9	18	34	

DRG_199_(7)

(Continued)

(b) Solve the minimal assignment problem whose effectivenses matrix is given by:

	1	2	3	4
Ι	2	3	4	5
II	4	5	6	7
III	7	8	9	8
IV	3	5	8	4

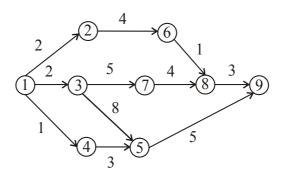
(c) Prove that a necessary and sufficient condition for the existence of feasible solution of a transportation problem is

$$\sum a_i = \sum b_j (i = 1, 2...m, j = 1...n)$$

Unit-V

- **5.** (a) Define the following:
 - (i) Merge event
 - (ii) Burst event
 - (iii) Total float
 - (iv) Free float

(b) Find the critical path and calculate the slack time for each event for the following PERT diagram:



(c) A project has the following time schedule:

Activity	Time in weeks
(1-2)	4
(1-3)	1
(2-4)	1
(3-4)	1
(3-5)	6
(4-9)	5
(5-6)	4
(5-7)	8
(6-8)	1
(7-8)	2
(8-9)	1
(8-10)	8
(9-10)	7

Construct PERT network and compute:

- (i) T_E and T_L for each event
- (ii) Float for each activity
- (iii) Critical path and its duration

M.A/M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional (A)

Paper - V

Programming in 'C' (with ANSI Features - I)

Time: Three Hours] [Maximum Marks: 70

Note : Answer any **two** parts from each question. All questions carry equal marks.

- **1.** (a) How to format source file? Explain with example.
 - (b) What is Expression? How to write expression in 'C' language? Explain with example.
 - (c) Explain the anatomy of 'C' function.

DRG_251_(3)

- **2.** (a) What is scalar data type? How to declare it? Explain with example.
 - (b) Explain the explicit conversion casts with example.
 - (c) What is Pointer? How to find address of an object? Explain with example.
- **3.** (a) Explain the break and continue statement with suitable example.
 - (b) What is infinite loop? How to control infinite loop in 'C' language? Explain with example.
 - (c) Write a programme to check whether a given number is prime number or not.
- **4.** (a) Write a programmme to check a given number is even number or odd number using conditional operator.
 - (b) Explain the increment and decrement operator with suitable example
 - (c) What is Memory Operator? Explain with suitable example
- **5.** (a) Write a programme to find an element from array list.

(b) Write a programmme to addition of two matrix (assume 3×3 matrix).

(c) Write a programme to display transpose of matrix (assume 3×3 matrix).

.....