

PGDCA 2nd Semester Examination, May-June 2021

PGDCA - 107

Database Management System

Time : Three	e Hours]	[Maximum	Marks	:	100
--------------	----------	----------	-------	---	-----

Note : Answer any **two** parts from each question. All questions carry equal marks.

1. (*a*) What do you understand by data, information and knowledge ? Also explain the concept of DBMS.

- (b) Explain various types of database languages in detail.
- (c) Write short notes on any **two** of the following :
 - (i) Database Administration roles
 - (ii) Importance of data dictionary
 - (iii) Relational data model

DRG_134_(3)

2.	<i>(a)</i>	What	do	you	mean	by	ER-model?
		Expla	in en	tity at	tributes	and	relationships
		with	exam	ple.			

(b) Draw an E-R diagram forn library management system.

(2)

- (c) Explain the following with example:
 - (i) Primary key
 - (ii) Candidate key
 - (iii) Super key
 - (iv) Foriegn key
 - (v) Unique key
- **3.** (*a*) Explain relational algebra and its concept with example.
 - (b) Explain the concept of the domain relational calculus.
 - (c) Explain simple and complex queries using relational algebra.
- **4.** (*a*) What is decomposition? Explain functional dependencies with example.
 - (b) What do you mean by normalization? Explain 1NF, 2NF and 3NF with suitable example.
 - (c) Differentiate between BCNF and 3NF.
- 5. (a) Explain DDL, DCL and DML with suitable example.

DRG_134(3)

- (b) Explain management of roles and granting roles and privilege in DBMS.
- (c) Explain the following with example:
 - (i) Order by clause
 - (ii) Join clause
 - (iii) Group function
 - (iv) Where clause

DRG_134_(3)

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - V

Advanced Discrete Mathematics-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Define connectivity of a graph and prove that if the intersection of two paths in a graph is a disconnected graph then the union of the two paths has at least one circuit.
 - (b) Define Tree and prove that a graph is a tree if and only if there is one and only path between every pair of vertices.
 - (c) Define planar graph and state and prove Euler's formula for connected planar graph.

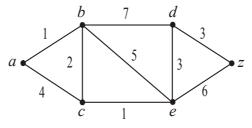
DRG_252_(4)

Unit-II

- 2. (a) Define fundamental cut sets and prove that every circuit has an even number of edges in common with every cut set.
 - (b) Explain the incidence matrix and adjacency matrix of a graph.
 - (c) The necessary and sufficient condition for a connected graph G to be an Euler graph is that 'all vertices of G are of even degree'. Show that.

Unit-III

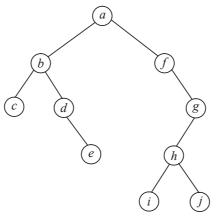
3. (a) Define weighted graph and write an algorithm for shortest path in weighted graph and use it to find shortest path from a to z in the graph shown in fig. where numbers associated with the edges are the weights.



- (b) Explain Warshall's algorithm and lct $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$ be a relation on R then find transitive closure of R.
- (c) Explain Tree Traversals and determine the order in which the vertices of the binary tree given below will be visited under

DRG_252_(4)

(i) In order (ii) Pre order (iii) Post order



- 4. (a) Design a finite state machine M which can add two binary numbers and compute the sum of 101110 and 010011.
 - (b) Define equivalent states and find π_0 , π_1 and π_2 for the following finite state machines :

	State	Inp	out	Output
		0	1	
\Rightarrow	S_0	S_1	S_5	0
	S_1	S_0	S_5	0
	S_2	S_6	S_0	0
	S_3	S_7	S_1	0
	S_4	S_0	S_6	0
	S_5	S_7	S_2	1
	$S_0 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7$	S_0	S_3	1
	$\tilde{S_7}$	$S_0 \\ S_6 \\ S_7 \\ S_0 \\ S_7 \\ S_0 \\ S_0 \\ S_0$	$S_5 \\ S_5 \\ S_0 \\ S_1 \\ S_6 \\ S_2 \\ S_3 \\ S_2$	1

 $DRG_252_(4)$

(4)

(c) Define homomorphism. Let S be any state in a finite state machine and let x and y be any words then f(S, xy) = f(f(S, x), y) and g(S, xy) = g(f(S, x), y).

Unit-V

- 5. (a) Define finite state automaton and design a finite state automaton that accepts those strings over {0, 1} such that the number of zeros is divisible by 3.
 - (b) Construct deterministic finite state automaton equivalent to the following non deterministic finite state automaton $M = (\{0, 1\}, \{S_0, S_1\}, S_0, \{S_1\}, f\}$ where f is given by the table

$\backslash I$	f		
$S \searrow$	0	1	
S ₀	$\{S_0, S_1\}$	$\{S_1\}$	
<i>S</i> ₁	φ	$\{S_0, S_1\}$	

(c) Write any two differences between Moore and Mealy Machine and consider the Mealy Machine described by the transition tables. Construct a Moore Machine which is equivalent to the Mealy Machine.

	Present state	Input $a = 0$		Input $a = 1$		
		state	output	state	output	
\Rightarrow	S_1	S_3	0	S_2	0	
	S_2	S_1	1	S_4	0	
	$S_{\overline{3}}$	S_2	1	S_1	1	
	$\tilde{S_4}$	$\tilde{S_4}$	1	S_3	0	

DRG_252_(4)

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - IV

Advanced Complex Analysis-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- **1.** (*a*) State and prove Weierstrass factorization theorem.
 - (b) To prove for $\operatorname{Re} z > 1$,

$$G(z)\overline{|(z)|} = \int_0^\infty \left(e^t - 1\right)^{-1} t^{z-1} dt$$

(c) State and prove Mittag-Leffler's theorem.

DRG_52_(3)

Unit-II

2. (*a*) State and prove Schwarz reflection principle.

(b) Show that the series
$$\sum_{n=0}^{\infty} \frac{z^n}{z^{n+1}}$$
 and

$$\sum_{n=0}^{\infty} \frac{(z-i)^n}{(z-i)^{n+1}}$$
 are analytic continuation to

each other.

(c) Let $\gamma : [0, 1] \to C$ be a path and let $\{(f_t, D_t) : 0 \le t \le 1\}$ be an analytic continuation along γ . For $0 \le t \le 1$ let R(t) be the radius of convergence of the power series expansion of f_t about $z = \gamma(t)$. Then either $R(t) = \infty$ or $R: [0, 1] \to (0, \infty)$ is continuous.

Unit-III

- 3. (a) State and prove Harnack's theorem.
 - (b) Let G be a region and $f: \delta_{\infty} G \to R$ a continuous function. Then show that $u(z) = \sup \{ \phi(z) : \phi \in P(f, G) \}$ defines a harmonic function u in G.

DRG_52(3)

- (c) Let G be a region, then prove that :
 - (i) The matrix space H(G) is complete.
 - (*ii*) If $\{u_n\}$ is a sequence in H(G) such that $u_1 \le u_2 \le \dots$ then either $u_n(z) \to \infty$ uniformly on compact subset of G or $\{u_n\}$ converges in H(G) to a harmonic function.

Unit-IV

- 4. (a) Define order of an entire function. Find the order of polynomial $P(z) = a_0 + a_1 z$ $+ a_2 z^2 + \dots + a_n z^n, a_n \neq 0.$
 - (b) State and prove Poisson-Jensen formula.
 - (c) State and prove Borel's theorem.

Unit-V

- 5. (a) State and prove Bloch's theorem.
 - (b) State and prove Schottky's theorem.
 - (c) State and prove $\frac{1}{4}$ -theorem.

DRG_52(3)

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - II

Real Analysis-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Let f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b] and α is continuous at every point at which f is discontinuous. Then show that $f \in \mathbb{R}(\alpha)$.

DRG_198_(4)

(b) Let α be a monotonically increasing function on [a, b] and α' ∈ ℝ [a, b]. Let f is bounded real function on [a, b]. Then prove that f∈ ℝ(α) if and only if f α' ∈ ℝ [a, b]. In that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx.$$

(c) If γ' is continuous on [a, b], then prove that γ is rectifiable and $\Lambda_{\gamma} = \int_{a}^{b} |\gamma'(t)| dt$.

Unit-II

- **2.** (*a*) Prove that a countable union of measurable set is a measurable set.
 - (b) Show that a function is simple iff it is measurable and assumes only a finite number of values.
 - (c) Let $\{E_i\}$ be an infinite decreasing sequence of measurable sets; that is, a sequence with $E_{i+1} \subset E_i$, for each $i \in N$. Let $m(E_i) < \infty$ for at least one $i \in N$. Then

show that
$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$$
.

DRG_198_(4)

Unit-III

- 3. (a) The class B of all μ*-measurable sets is a σ-algebra of subsets of X. If μ is μ* restricted to B, then prove that μ is a complete measure on B.
 - (b) Show that the set function μ* is an outer measure.
 - (c) Let (X, S, μ) be a σ -finite measure space, Σ a semi ring of sets such that $S \subset \Sigma \subset \mathcal{B}$, and $\overline{\mu}$ is a measure on Σ . If $\overline{\mu} = \mu$ on S, then prove that If $\overline{\mu} = \mu^*$ on Σ .

Unit-IV

4. (a) Evaluate the four derivatives at x = 0 of the function given by

$$f(x) = \begin{cases} ax.\sin^2\left(\frac{1}{2}\right) + bx.\cos^2\left[\frac{1}{x}\right] & \text{if } x > 0\\ 0 & \text{if } x = 0\\ a'x.\sin^2\left(\frac{1}{x}\right) + b'x.\cos^2\left[\frac{1}{x}\right] & \text{if } x < 0 \end{cases}$$

where a < b and a' < b'.

(b) State and prove Vitali's covering theorem.

DRG_198_(4)

(4)

(c) Let f be a bounded and measurable function defined on [a, b] if $F(x) = \int_{a}^{x} f(t) dt + F(a)$ then F'(x) = f(x) a.e. in [a, b].

Unit-V

- 5. (a) Prove that the p spaces are complete.
 - (b) State and prove Riesz theorem.
 - (c) State and prove Egoroff's theorem.

DRG_198_(4)

M.A./M.Sc. 2nd Semester Examination, May-June 2021

MATHEMATICS

Paper - I

Advanced Abstract Algebra-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Show that Rc is large for $c \neq 0$, $c \in R$ and R is a noetherian integral domain.
 - (b) Show that for any noetherian ring R each ideal contains a finite product of prime ideals.

DRG_197_(4)

(c) Can we prove every submodule of a noetherian module is finitely generated ? How ?

Unit-II

- **2.** (a) Prove that regular elements in A (V) form a group.
 - (b) In V define T by

$$\left(\sum_{n=0}^{3} \alpha_n x^n\right) T = \sum_{n=0}^{3} \alpha_n \left(x+1\right)^n.$$

Compute the matrix of T in the basis (1, 1 + x, $1 + x^2$, $1 + x^3$).

(c) If V is an n-dimensional vector space over F, then for given $T \in A(V)$ there exists a non-trivial polynomial $g(x) \in F[x]$ of degree at most n^2 , such that g(T) = 0. Prove it.

Unit-III

3. (a) Show that the elements S and T in $A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.

DRG_197_(4)

- (b) Find all possible rational canonical forms and elementary divisors for the 6×6 matrix in F_6 having $(x-1)(x^2+1)^2$ as minimal polynomial.
- (c) Define nilpotent transformation and show that *ST-TS* is nilpotent iff *S*, $T \in A_F(V)$, *ST-TS* commutes with *S* and *F* is of characteristics zero.

Unit-IV

4. (*a*) Obtain the Smith normal form and rank for

$$\begin{bmatrix} -(x+3) & 2 & 0 \\ 1 & -x & 1 \\ 1 & -3 & -(x+2) \end{bmatrix}.$$

- (b) Show that if V is a finite dimensional vector space over F, then V is a finitely generated F[x] module.
- (c) Let $T \in \operatorname{Hom}_F(V, V)$. Then show that there exists a basis of V with respect to which the matrix of T is $A = \operatorname{diag}(B_1, B_2, \dots, Br)$ where B_i is the companion matrix of a certain unique polynomial $f_i(x)$, $i = 1, 2, \dots, r$ such that $f_1(x) | f_2(x) | \dots | f_r(x)$.

DRG_197_(4)

(4)

Unit-V

- 5. (a) Find the rational canonical form of a matrix whose invariant factors are x+2, $x^2 x 6$, $x^3 2x^2 5x + 6$.
 - (b) Find Jordan canonical form of a matrix with characteristics polynomial $p(x) = (x-1)^2 (x+1)$.
 - (c) Find invariant factors, elementary divisors and Jordan canonical form of the matrix

$$\begin{bmatrix} 0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2 \end{bmatrix}.$$

DRG_197_(4)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Optional - A

Paper - V

Programming in 'C' (with ANSI Features) - II

Time : Three Hours] [Maximum Marks : 70

Note : Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) What is static storage class? Explain with suitable example.
 - (b) Demonstrate local and global variable using suitable example.
 - (c) Explain ANSI rules for the syntax and semantics of the storage class.

DRG_107_(3)

- (2)
- **2.** (*a*) What is Pointer ? Explain pointer arithmetics with example.
 - (b) How to pass Array as argument in a function? Explain with suitable example.
 - (c) Demonstrate pointer to pointer with suitable example.
- **3.** (*a*) What is recursive function ? Explain with example.
 - (b) Demonstrate macro substitution with suitable example.
 - (c) What is conditional compilation? Explain with suitable example.
- **4.** (*a*) Write a program to input Roll No, Name and Marks of any three subjects then calculate total marks and percentage using structure.
 - (b) Write a program to demonstrate, how the memory is allocated dynamically and release.
 - (c) Write a program to add a new node in single link list and display the value of all nodes.
- 5. (a) What is error ? How to handle errors in 'C' languages ?

DRG_107_(3)

- (b) Demonstrate the reading and writting in a file with suitable example.
- (c) Explain any five input/output functions in 'C' language with example.

DRG_107_(3)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Optional - A

Paper - IV

Operations Research

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use dynamic programming to solve Minimize $z = p_1 \log p_1 + p_2 \log p_2$

 $+ p_n \log p_n$

Subject to the constraints :

$$p_1 + p_2 + p_3 + \dots + p_n = 1$$
 and $p_j \ge 0$ (*j*=1, 2, *n*)

DRG_268_(4)

- (b) What is principle of optimality? Write the recursive equation approach to solve dynamic programming problem.
- (c) Use dynamic programming to solve the following L.P.P. Maximize $z = 3x_1 + 5x_2$ Subject to the constraints : $x_1 \le 4$, $x_2 \le 6$, $3x_1 + 2x_2 \le 18$ and $x_1, x_2 \ge 0$

Unit-II

- 2. (a) Consider a 'modified' form of 'matching biased wins' game problem. The matching player is paid ₹ 8 if the two coins turns both heads and ₹ 1 if the coins turns both tails. The non-matching player is paid ₹ 3 when two coins do not match. Given the choice of being the matching or non-matching player, which one would you choose and what would be your strategy?
 - (b) Solve the following problem graphically:

Player B Player A $\begin{bmatrix} 3 & -3 & 4 \\ -1 & 1 & -3 \end{bmatrix}$

(c) For the following playoff matrix, find the value of the game and the strategies of

DRG_268_(4)

(Continued)

(2)

player A and B by using Linear Programming:

Player *B* Player *A* $\begin{bmatrix} 3 & -1 & 4 \\ 2 & 6 & 7 & -2 \end{bmatrix}$

Unit-III

- 3. (a) Solve the following integer P.P.: Maximize z = 2x₁ + 3x₂ Subject to the constraints: -3x₁ + 7x₂ ≤ 14, 7x₁ - 3x₂ ≤ 14, x₁, x₂ ≥ 0 and are integers
 (b) Use branch and bound method to solve the following L.P.P.: Minimize z = 4x₁ + 3x₂
 - Subject to the constraints : $5x_1 + 3x_2 \ge 30$, $x_1 \le 4$, $x_2 \le 6$, $x_1, x_2 \ge 0$ and are integers
 - (c) Maximize $z = x_1 + x_2$ Subject to the constraints : $3x_1 + 2x_2 \le 5$, $x_2 \le 2$, $x_1, x_2 \ge 0$ and x_1 is an integer.

DRG_268_(4)

(4)

Unit-IV

- **4.** (*a*) Write the applications of operations reserach to industrial problems.
 - (b) Explain petroleum and refinery operations.
 - (c) Explain blending problems.

Unit-V

5.	<i>(a)</i>	Obtain the necessary and sufficient
		conditions for the optimum solutions of
		the following NLPP :
		Minimize $z = f(x_1, x_2)$
		$= 3e^{2x_1+1} + 2e^{x_2+5}$
		Subject to the constraints :
		$x_1 + x_2 = 7$ and
		$x_1, x_2 \ge 0$
	<i>(b)</i>	Use Wolfe's method to solve
		Max. $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 2$ and
		$x_1^1, x_2 \stackrel{2}{\geq} 0$
	(c)	Solve the following quadratic
	(0)	programming problems by using Beale's
		method :
		Maximize $z = 2x_1 + 3x_2 - x_1^2$
		Subject to the constraints :
		$x_1 + 2x_2 \le 4$ and
		$x_1, x_2 \ge 0$

DRG_268_(4)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - III (C)

Fuzzy Set Theory and Its Applications-II

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- **1.** (*a*) Define fuzzy propositions with properties and examples.
 - (b) Define fuzzy quantifiers with examples.
 - (c) Write the method of inference from conditional and qualified propositions.

DRG_212_(4)

Unit-II

- 2. (a) Let f be a function defined by $f(a) = e^{a}$ all $a \in [0, 1]$. Find the for fuzzy intersection, fuzzy union, fuzzy implication and fuzzy compliment generated by f.
 - (b) Explain approximate reasoning and fuzzy language with one such example.
 - (c) Write the interpolation method and show that $B_2^1 \subseteq B_4^1 \subseteq B_1^1 = B_3^1$.

Unit-III

- **3.** (*a*) Write a short note on design of fuzzy controllers.
 - (b) Discuss possible ways of fuzzyfying the general dynamic system.
 - (c) Discuss the design of a air conditioner fuzzy controller.

Unit-IV

4. (*a*) Define defuzzification and write any two methods of defuzzification.

DRG_212_(4)

(b) Aggregate graphically the fuzzy sets :

$$A_{1} = \frac{0}{0}, \frac{.3}{1}, \frac{.3}{2}, \frac{.3}{3}, \frac{.3}{4}, \frac{.0}{5}$$
$$A_{2} = \frac{0}{3}, \frac{.5}{4}, \frac{.5}{5}, \frac{.5}{6}, \frac{.0}{7}$$
$$A_{3} = \frac{0}{5}, \frac{1}{6}, \frac{1}{7}, \frac{.0}{8}$$

and solve it by the centroid method.

(c) Solve the following fuzzy linear programming problems

Max. $z = 6x_1 + 5x_2$

Subject to

 $(5, 3, 2)x_1 + (6, 4, 2)x_2 \le (25, 6, 9)$ (5, 2, 3)x_1 + (2, 1.5, 1)x_2 \le (13, 7, 4) x_1, x_2 > 0.

Unit-V

5. (a) Let each individual of four decision makers has a total preference ordering $P_i (i \in N)$ on a set of alternatives $X = \{a, b, c, d\}$ as $P_1 = (a, b, d, c); P_2 = (a, c, b, d);$ $P_3 = (b, a, c, d); P_4 = (a, d, b, c)$

DRG_212_(4)

(4)

Find the fuzzy preference relation. Also find α -cuts of the fuzzy relation and group level of agreement concerning the social choice denoted by the total ordering (a, b, c, d).

- (b) Explain individual and multiperson decision making in fuzzy environment.
- (c) Explain construction of an ordering of all given alternatives by Shimura method.

DRG_212_(4)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - II

Partial Differential Equations and Mechanics

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove Hamilton ODE.
 - (b) Derive Hopf-Lax formula.
 - (c) For asymptotics in $|\infty|$ norm, there exists a constant C such that $|u(x,t)| \le C/\sqrt{t}$.

DRG_265(3)

Unit-II

2. (*a*) Use separation of variables to solve the porous medium equation

$$u_t = \Delta(u^{\Upsilon}) = 0$$
 in $\mathbb{R}^n \times (0, \infty)$.

- (b) State and prove Plancherel's theorem.
- (c) Derive Hopf-Cole transformation.

Unit-III

- **3.** (*a*) Explain about vanishing viscosity method for Burger's equation.
 - (b) Write about asymptotics for linear terms.
 - (c) Define Majorants. Show that if $f = \sum_{\alpha} f_{\alpha} \cdot x^{\alpha}$ converges for |x| < r and $0 < s\sqrt{n} < r$ then f has a majorant for $|x| < s\sqrt{n}$.

Unit-IV

- **4.** (*a*) State and prove the principle of least action.
 - (b) Explain about Poincare-Cartan integral.

DRG_265_(3)

(c) Show that the transformation

$$p = q \operatorname{cot} p, \ Q = \log\left(\frac{1}{q}\sin p\right)$$

is cannonical.

Unit-V

- 5. (a) State and prove the relation between Lagrange's and Poisson's brackets.
 - (b) Prove that the Poisson bracket of two constants of motion is itself a constant of the motion.
 - (c) State and prove Jacobi Identity through Poisson bracket.

DRG_265_(3)

M.A./M.Sc. 4th Semester Examination, May-June 2021

MATHEMATICS

Paper - I

Functional Analysis-II

Time : Three Hours]

[Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove closed graph theorem.
 - (b) Let X be a Banach space and Y be a normed linear space. Let $\{T_i\}$ be a nonempty set of continuous linear transformation from X into Y, such that $\{T_i(x)\}$ is bounded for each x and X, then show that is $\{||T_i||\}$ is bounded.

DRG_106_(3)

(c) Let T be a bounded linear transformation from a Banach space X into a normed linear space Y. Then show that the openness of T implies the completness of Y.

Unit-II

- 2. (a) Let X and Y be normed linear space. Then show that B(X, Y) the set of all bounded linear transformations from X into Y, is a normed linear space.
 - (b) Let X is a Banach space. Then show that X is reflexive if and only if X^* is reflexive, where X^* is the conjugate space of a normed linear space X.
 - (c) Let E be a real normed linear space and let M be a linear subspace of E. If $f \in M^*$, then show that there is a $g \in E^*$ such that $f \subset g$ and ||g|| = ||f||.

Unit-III

- 3. (a) State and prove Bessel's inequality.
 - (b) If X is an inner product space and $x, y \in X$, then show that $|(x, y)| \le ||x|| ||y||$.
 - (c) Show that a Banach space is a Hilbert space if and only if the parallelogram law holds.

DRG_106_(3)

Unit-IV

- **4.** (*a*) State and prove Riesz Representation theorem.
 - (b) Prove that every Hilbert space is reflexive.
 - (c) Let T be an operator on a Hilbert space
 H. Then there exists a unique operator
 T* on H such that

$$(Tx, y) = (x, T^*y)$$

for all $x, y \in H$.

Unit-V

- 5. (a) If T_1 and T_2 are self-adjoint, then show that $T_1 T_2$ is self-adjoint if and only if they commute, i.e. $T_1 T_2 = T_2 T_1$.
 - (b) State and prove generalized Lax-Milgram theorem.
 - (c) If T is a normal operator on a Hilbert space H and D is any scalar, then show that $T-\lambda I$ is also normal.

DRG_106_(3)